[1]RCSB Protein Data Bank. URL:
[2]H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P.E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):235–242, 2000. URL:
[3]J F Douglas and E. J. Garboczi. Intrinsic viscosity and the polarizability of particles having a wide range of shapes. Advances in Chemical Physics, 91:85–153, 1995. URL:
[4]Jack F Douglas, Huan-Xiang Zhou, and Joseph B Hubbard. Hydrodynamic friction and the capacitance of arbitrarily shaped objects. Physical Review E, 49(6):5319–5331, 1994. URL:
[5]Joseph Hubbard and Jack Douglas. Hydrodynamic friction of arbitrarily shaped brownian particles. Physical Review E, 47(5):R2983–R2986, 1993. URL:
[6]Derek Juba, Walid Keyrouz, Michael Mascagni, and Mary Brady. Acceleration and parallelization of ZENO/Walk-on-Spheres. Procedia Computer Science, 80:269–278, 2016. International Conference on Computational Science 2016, 6–8 June 2016, San Diego, California, USA. URL:
[7]Eun-Hee Kang, Marc Mansfield, and Jack Douglas. Numerical path integration technique for the calculation of transport properties of proteins. Physical Review E, 69(3):031918, 2004. URL:
[8]Marc Mansfield and Jack Douglas. Improved path integration method for estimating the intrinsic viscosity of arbitrarily shaped particles. Physical Review E, 78(4):046712, 2008. URL:
[9]Marc Mansfield, Jack Douglas, and Edward Garboczi. Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. Physical Review E, 64(6):061401, 2001. URL:
[10]Michael Mascagni and Ashok Srinivasan. Algorithm 806: sprng: a scalable library for pseudorandom number generation. ACM Transactions on Mathematical Software (TOMS), 26(3):436–461, 2000.
[11]Doros N Theodorou and Ulrich W Suter. Shape of unperturbed linear polymers: polypropylene. Macromolecules, 18(6):1206–1214, 1985. URL: